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PARALLEL PERFORMANCE INVESTIGATIONS OF AN UNSTRUCTURED MESH
NAVIER-STOKESSOLVER

DIMITRIJ.MAVRIPLIS*

Abstract. A Reynolds-averagedNavier-Stokessolverbasedonunstructuredmeshtechniquesforanalysis
of high-liftconfigurationsis described.Themethodmakesuseof anagglomerationmultigridsolverfor
convergenceacceleration.Implicitline-smoothingisemployedto relievethestiffnessassociatedwithhighly
stretchedmeshes.A GMREStechniqueisalsoimplementedtospeedconvergenceattheexpenseofadditional
memoryusage.Thesolveris cacheefficientandfully vectorizable,andis parallelizedusinga two-level
hybridMPI-OpenMPimplementationsuitableforsharedand/ordistributedmemoryarchitectures,aswell
asclustersofsharedmemorymachines.Convergenceandscalabilityresultsareillustratedforvarioushigh-lift
cases.

Key words, parallel,unstructured,multigrid

Subject classification.AppliedandNumericalMathematics

1. Introduction. Theworkdescribedin thispaperrepresentsextensionsandimprovementsto apre-
viouslydescribedunstructuredmultigridflowsolverwhichhasbeenusedextensivelyfor high-liftanalysis
[9,11,12].Unstructuredmeshapproachesarewellsuitedfor high-liftapplicationswherecomplicatedge-
ometriesaremostoftenencountered.However,in orderto offsettheadditionalcomputationaloverheads
associatedwithunstructuredmeshes,andin theinterestofenablingsolutionsonveryhighresolutiongrids
for high accuracy, special attention must be devoted to producing a rapidly converging algorithm, as well as

an extremely scalable solution procedure which can run efficiently on thousands of processors.

The basic solution algorithm consists of a non-linear multigrid solver, enhanced by a directional line-

implicit preconditioning technique for overcoming the stiffness associated with highly-stretched meshes. In

the current work, the existing unstructured multigrid solver has been extended to support both cache-based

and vector architectures as well as multi-level parallelism. The original MPI-based parallel implementation

has been extended to a two-level parallelization strategy which employs MPI to communicate between groups

of partitioned subdomains, and OpenMP to communicate between various subdomains contained within each

MPI process. In this manner, the code can be run in a purely MPI mode, suitable for distributed memory

architectures, a purely OpenMP mode suitable for shared memory architectures, or a hybrid two level MPI-

OpenMP mode suitable for clusters of shared memory processors, typical of many emerging large parallel

supercomputer architectures.

A GMRES procedure is also introduced as an option to speed up convergence when additional memory is

available. This approach is particularly attractive for medium size problems running on distributed memory

architectures, where unused memory on the individual processors represents a resource which can be exploited

at little extra cost by the GMRES algorithm.

* Institute for Computer Applications in Science and Engineering (ICASE), Mail Stop 132C, NASA Langley Research Center,

Hampton, VA 23681 2199, U.S.A., dimitri_iease, edu. This research was partially supported by the National Aeronautics and

Space Administration under NASA Contract No. NAS1-97046 while the author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-2199. Partial support

was also provided under AFOSR grant AFOSR-PO-99-0005 and under U.S. Department of Energy subcontract B347882 from

Lawrence Livermore National Laboratory.
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One of the principal aims of this work is to provide an efficient production capability for mid-size

problems (up to 107grid points) on various cost-effective computer architectures, while at the same time

demonstrating the feasibility of computing very large cases (ultimately up to 109 grid points) on custom

parallel supercomputers such as those currently being developed for the DOE ASCI program.

2. Base Solver. The Reynolds averaged Navier-Stokes equations are discretized by a finite-volume

technique on meshes of mixed element types which may include tetrahedra, pyramids, prisms, and hexahedra.

In general, prismatic elements are used in the boundary layer and wake regions, while tetrahedra are used in

the regions of inviscid flow. All elements of the grid are handled by a single unifying edge-based data-structure

in the flow solver [13].

The governing equations are discretized using a central difference finite-volume technique with added

matrix-based artificial dissipation. The matrLx dissipation approximates a Roe Rieman-solver based upwind

scheme [19], but relies on a biharmonic operator to achieve second-order accuracy, rather than on a gradient-

based extrapolation strategy [8]. The thin-layer form of the Navier-Stokes equations is employed in all

cases, and the viscous terms are discretized to second-order accuracy by finite-difference approximation. For

multigrid calculations, a first-order discretization is employed for the convective terms on the coarse grid

levels.

The basic time-stepping scheme is a three-stage explicit multistage scheme with stage coefficients opti-

mized for high frequency damping properties [25], and a CFL number of 1.8. Convergence is accelerated by

a local block Jacobi preconditioner, which involves inverting a 5 × 5 matrLx for each vertex at each stage

[18, 14, 15, 16]. A low-Mach number preconditioner [27, 23, 26] is also implemented. This has been found to

be essential for high-lift flows which may contain large regions of low Mach number flow particularly on the

lower surfaces of the wing. The low-Mach number preconditioner is implemented by modifying the dissipation

terms in the residual as described in [8], and then taking the corresponding linearization of these modified

terms into account in the Jacobi preconditioner, a process sometimes referred to as "preconditionin92''

[8, 24].

The single equation turbulence model of Spalart and Allmaras [22] is utilized to account for turbulence

effects. This equation is discretized and solved in a manner completely analogous to the flow equations, with

the exception that the convective terms are only discretized to first-order accuracy.

3. Directional-Implicit Multigrid Algorithm. An agglomeration multigrid algorithm [7, 13, 21]

is used to further enhance convergence to steady-state. In this approach, coarse levels are constructed by

fusing together neighboring fine grid control volumes to form a smaller number of larger and more complex

control volumes on the coarse grid. A multigrid cycle consists of performing a time-step on the fine grid

of the sequence, transferring the flow solution and residuals to the coarser level, performing a time-step on

the coarser level, and then interpolating the corrections back from the coarse level to update the fine grid

solution. The process is applied recursively to the coarser grids of the sequence.

While agglomeration multigrid delivers very fast convergence rates for inviscid flow problems, the con-

vergence obtained for viscous flow problems remains much slower, even when employing preconditioning

techniques as described in the previous section. This slowdown is mainly due to the large degree of grid

anisotropy in the viscous regions. A directional smoothing technique [8, 9] is employed to overcome this

aspect-ratio induced stiffness. Directional smoothing is achieved by constructing lines in the unstructured

mesh along the direction of strong coupling (i.e., normal to the boundary layer) and solving the implicit

system along these lines using a tridiagonal line solver.
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A weightedgraphalgorithmis usedto constructthe linesoneachgridlevel,usingedgeweightsbased
onthestencilcoefficientsforascalarconvectionequation.Thisalgorithmproduceslinesofvariablelength.
In regionswherethemeshbecomesisotropic,thelengthofthelinesreducesto zero(onevertex,zeroedges),
andthepreconditionedexplicitschemedescribedin theprevioussectionisrecovered.Anexampleoftheset
oflinesconstructedfromthetwo-dimensionalunstructuredgridin Figure3.1isdepictedinFigure3.2.

FIG.3.1. Unstructured Grid for three element air

foil; Number of Points 61,103, Wall Resolution 10 6
chords

FIG. 3.2. Directional Implicit Lines Constructed on
Grid of Figure 3.1 by Weighted Graph Algorithm

4. Domain Decomposition. The unstructured multigrid solver is parallelized by partitioning the

domain using a standard graph partitioner [5, 6], allocating one or more partitions to each processor of

a parallel computer or cluster of interconnected machines, and communicating between the various grid

partitions using either the MPI message-passing library [4] or the OpenMP shared memory protocols [2].

In the multigrid algorithm, the vertices on each grid level must be partitioned across the available

processors. Since the mesh levels of the agglomeration multigrid algorithm are fully nested, a partition of

the fine grid could be used to infer a partition of all coarser grid levels. While this would minimize the

communication in the inter-grid transfer routines, it affords little control over the quality of the coarse grid

partitions. Since the amount of intra-grid computation on each level is much more important than the

inter-grid computation between each level, it is essential to optimize the partitions on each grid level rather

than between grid levels. Therefore, each grid level is partitioned independently. This results in unrelated

coarse and fine grid partitions. In order to minimize inter-grid communication, the coarse level partitions are

renumbered such that they are assigned to the same processor as the fine grid partition with which they share

the most overlap. For each partitioned level, the edges of the mesh which straddle two adjacent processors

are assigned to one of the processors, and a "ghost vertex" is constructed in this processor, which corresponds

to the vertex originally accessed by the edge in the adjacent processor (c.f. Figure 4.1). During a residual

evaluation, the fluxes are computed along edges and accumulated to the vertices. The flux contributions

accumulated at the ghost vertices must then be added to the flux contributions at their corresponding physical

vertex locations in order to obtain the complete residual at these points. This phase incurs interprocessor

communication. In an explicit (or point implicit) scheme, the updates at all points can then be computed

without any interprocessor communication once the residuals at all points have been calculated. The newly

updated values are then communicated to the ghost points, and the process is repeated.
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FIG. 4.1. Illustration of Creation of Internal Edges and Ghost Points at Inter processor Boundaries

The use of line-solvers can lead to additional complications for distributed-memory parallel implemen-

tations. Since the classical tridiagonal line-solve is an inherently sequential operation, any line which is split

between multiple processors will result in processors remaining idle while the off-processor portion of their

line is computed on a neighboring processor. However, the particular topology of the line sets in the un-

structured grid permit a partitioning the mesh in such a manner that lines are completely contained within

an individual processor, with minimal penalty (in terms of processor imbalance or additional numbers of cut

edges). This can be achieved by using a weighted-graph-based mesh partitioner such as the CHACO [5] or

MeTiS [6] partitioners. Weighted graph partitioning strategies attempt to generate balanced partitions of

sets of weighted vertices, and to minimize the sum of weighted edges which are intersected by the partition

boundaries.

FIG. 4.2. Illustration of Line Edge Contraction and Creation of Weighted Graph for Mesh Partitioning; V and

E Values Denote Vertex and Edge Weights Respectively

In order to avoid partitioning across implicit lines, the original unweighted graph (set of vertices and

edges) which defines the unstructured mesh is contracted along the implicit lines to produce a weighted

graph. Unity weights are assigned to the original graph, and any two vertices which are joined by an edge

which is part of an implicit line are then merged together to form a new vertex. Merging vertices also produce

merged edges as shown in Figure 4.2, and the weights associated with the merged vertices and edges are

taken as the sum of the weights of the constituent vertices or edges. The contracted weighted graph is then

partitioned using one of the partitioners described in references [5, 6], and the resulting partitioned graph

is then de-contracted, i.e., all constituent vertices of a merged vertex are assigned the partition number of
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that vertex.Sincetheimplicitlinesreduceto a singlepointin thecontractedgraph,theycanneverbe
brokenbythepartitioningprocess.Theweightingassignedto thecontractedgraphensuresloadbalancing
andcommunicationoptimizationofthefinaluncontractedgraphin thepartitioningprocess.

Dueto thelargesizeofthegridsconsideredin thiswork,allpreprocessingoperationsmustbeperformed
onalargeparallelsupercomputer.Thisincludestheagglomerationprocedure,thepartitioningofthevarious
coarseandfinemultigridlevels,andthedeterminationoftheinter-processorcommunicationschedules.This
is mostlydueto thelargememoryrequirementsof theseprocedures,(whichrunbetween50%and75%
of thememoryrequirementsof theflowsolver,i.e., 1 Kbytepergrid point),ratherthantheCPUtime
requirements,whicharesmallcomparedto thoseoftheflowsolver.Atpresent,theseproceduresareexecuted
sequentiallyonasingleprocessorofanSGIOrigin2000,butusinglargeportionsofthememoryoftheentire
machine.Forexample,thevariouspreprocessingoperationsfora24.7millionpointgridrequiredbetween10
to 20Gbytesofmemoryandbetween45minutesto 90minutesforeachof theoperationsmentionedabove.
Thesequentialexecutionof largejobsofthisnatureismadepossiblebythesharedmemoryarchitectureof
theSGIORIGIN2000,andcannotbeperformedonpurelydistributedmemorymachinesor onclustered
machinearchitectures.Thecompleteparallelizationoftheseproceduresfordistributed-memorymachinesis
currentlyunderdevelopment.

5. Cache-Optimizationand Vectorization. Oneachpartitioneddomain,thesolvermustbeop-
timizedfor the processorarchitectureto whichthe domainis assigned.Thetwotypesof architectures
supportedarecache-basedscalarmicroprocessors,andvectorprocessors.Fora cache-basedscalarmicro-
processor,gridverticesandedgesarereorderedto increaselocalityandhencecacheefficiency.Thisisdone
individuallyoneachpartition.Thegridpointsarereorderedusingabreadth-firstsearchtechnique,similar
to a Cuthill-McKee[3]reorderingstrategy.Theedgesarethenreorderedsothat all edgestouchingeach
(reordered)vertexandnotpreviouslylistedareorderedsequentially,

Forvectorprocessorarchitectures,thegridverticesarereorderedin thesamemannerasdescribedabove,
but theedgesmustbesortedintogroups,suchthat withineachgroupnotwoedgesaccessthesamevertex,
inorderto preventdata-recurrences.Vectorizationcanthenproceedwithineachgroup.Sincemanycurrent
vectorarchitecturesincludea memorycache,thereorderingof verticesfor localitycanstill bebeneficial.
Theblocktridiagonallinesolvesarevectorizedbygroupingthelinesintosetsof64or128,whicharethen
vector-processed.Forlinesofunequallength,this involvespaddingtheshorterlineswith identitymatrices
in orderto achievea groupofuniformlinelength.

Figure5.1illustratesthesingleprocessorcomputationalratesachievedfor asmallproblem(agridof
approximately200,000points)onvariouscurrentprocessors.A computationalrateof225Mflopsisachieved
ontheCray-SV1vectorprocessor,whilea rateof 75Mflopsis achievedonanOrigin2000processor(250
MHzR10000).
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6. Parallel Programming Models. For parallel execution, the partitioned subdomains are dis-

tributed to the various processors of a parallel machine or a cluster of machines. During the parallel execution

of the program, inter-processor communication between the ghost points and their real images in neighbor-

ing partitions is required (see Figure 4.1). For distributed memory architectures, this communication is

implemented using the MPI message-passing library [4]. The inter-processor communication patterns are

pre-determined at run-time. Communication is then executed by packing messages from all ghost points on

a given processor that are to be sent to another processor into a buffer that is then sent as a single message.

This standard approach to inter-processor communication has the effect of reducing latency overheads by

creating fewer larger messages.

For shared memory architectures, a potentially more efficient communication strategy is to simply copy

(or copy-add) the values from the individual ghost points into the locations which correspond to their real

images, since the memory on different partitions is addressable from any other partition. Additionally, the

OpenMP standard [2] provides a simple strategy for parallelizing shared memory programs through the use

of compiler directives.

The original parallel implementation of the unstructured mesh solver was written using the MPI commu-

nication library [11]. The solver has currently been extended to include the capability for running OpenMP

in the place of, or in addition to, MPI. This is achieved by first modifying the code to enable the sequential

processing of multiple subdomains on each processor. This involves wrapping a loop over the number of

subdomains on a processor around the original subroutines which performed the computations in the MPI

program. Parallelization over the local subdomains can then be achieved simply by inserting the appropriate

OpenMP compiler directive directly preceding the loop over the number of subdomains. In addition, routines

which identify the memory locations of the ghost vertices and their corresponding real images in neighboring

subdomains must be constructed, as well as the routines which actually copy these values to and from their

corresponding locations.

For each MPI process, the individual arrays are initialized globally across all local subdomains, and

pointers which identify the starting location of each subdomain are constructed. These arrays, indexed by

the subdomain pointer, are then passed as arguments to the subdomain subroutines.
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Include OMP_DIRECTIVE

do : Loop over nulnber of partitions

call dotnaln_local_rout lne(array(pt r (part It londd)))

do : Loop over nulnber of vector groups

do : Loop over edges In a vector group

nl = edge_end(191edge )

n2 = edge_end(291edge )

flux = function of values at nlgn2

resldual(nl) = resldual(nl) _- flux

residual(n2) = residual(n2) - flux

enddo

enddo

enddo

c

Include OMP_DlltECTIVE

do : Loop over nulnber of partitions

call O MP_colnlnunlcat e

enddo

a

Include OMP_DIRECTIVE

do i Loop over number of partitions

call MPI_cotntnunlcat e

enddo

FIc. 6.1. Pseudo Code Illustration of the Code Structure for Vectorized Hybrid MPLOpenMP Routine for Thread to

Thread Communication Model. (Dashed lines delimit in lined subroutine representation)

In this manner, all array references in the subdomain routines are subdomain-local, and the existing

MPI subdomain code is preserved. Figure 6.1 illustrates the code structure within an MPI process. The

initial loop runs over the number of local subdomains. Since all these loops throughout the code are similar,

the whole code can be parallelized under OpenMP using a handful of compiler directives. The subdomain

routine is called in this primary loop. For brevity, the subdomain routine code has been inlined in the pseudo

code of Figure 6.1. This includes the second loop and third loops of the figure. The second loop runs over the

sorted groups of edges in order to enable vectorization within a group. For a scalar processor, the number

of such groups reduces to one, which includes all edges. The third loop runs over the edges within a group.

After these three nested loops are executed, the routine which performs the shared memory communication

is called, followed by the routine which performs MPI communication, in the case of the thread-to-thread

communication model described below.

The code structure is such that no explicit OpenMP synchronization steps (omp barrier) are employed.

Rather, separate parallelized do loops are employed. While these loops contain implicit synchronization

steps, they also enable the sequential execution of the code in the absence of any OpenMP directives. This

enables the code to run with multiple partitions on individual processors.

The current implementation results in a code which can be run in a purely MPI mode, suitable for

distributed memory architectures, a purely OpenMP mode, suitable for shared memory architectures, or a

two-level hybrid MPI-OpenMP mode, suitable for clusters of shared-memory processors.

There are various possible strategies for implementing MPI communication in conjunction with OpenMP.
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While OpenMP achieves parallelism by spawning multiple threads within a process [2], the MPI library is

only defined on a process basis and in general cannot distinguish between multiple threads. However, in

a thread-safe MPI implementation [1], MPI calls may be executed by the individual threads in a multi-

threaded environment. A communication strategy which can be executed entirely in parallel consists of

having individual threads perform MPI calls to send and receive messages to and from other threads living

on other MPI processes, as illustrated in Figure 6.2. In this case, the MPI calls must specify the process

identifier (id number) as well as the thread id to which the message is being sent (or received). While the

specification of a process id is a standard procedure within an MPI call, the specification of a thread id

can be implemented using the MPI send-recv tag [4]. In this approach, the size and number of messages is

identical to that produced by an equivalent code running MPI alone on all subdomains.

An alternate approach, illustrated in Figure 6.3, consists of having all threads pack their messages

destined for other threads of a particular remote MPI process into a single buffer, and then having the MPI

process (i.e., the master thread alone) send and receive the message using MPI . The received messages can

then be unpacked or scattered to the appropriate local subdomains. This packing and unpacking of messages

can be done in a thread-parallel fashion. However, the MPI sends and receives are executed only by the

master thread, and these operations may become sequential bottlenecks since all other threads remain idle

during this phase. One way to mitigate this effect is to overlap OpenMP and MPI communication. Using

non-blocking sends and receives, the master thread first issues all the MPI receive calls, followed by all the

MPI send calls. After this, while the MPI messages are in transit, the OpenMP communication routines

are executed by all threads, after which, the master thread waits until all MPI messages are received.

Thread-parallel unpacking of the MPI messages then proceeds as usual. This approach also results in a

smaller number of larger messages being issued by the MPI routines, which may be beneficial for reducing

latency on the network supporting the MPI calls. On the other hand, there is always a (thread-) sequential

portion of communication in this approach, which may degrade performance depending on the degree of

communication overlap achieved. Note that the grouping of communication into multiple overlapping levels

is not particular to the MPI-OpenMP programming model, but could be implemented on MPI-alone or

OpenMP-alone models, although implementation would be considerably more complicated.
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7. Scalability Results. We begin with a comparison between pure MPI and pure OpenMP imple-

mentations on two shared-memory architectures, the Cray SV1, and the SGI Origin 2000, for the single grid

(non-multigrid) solver. The test case consists of a 3.1 million point grid about an aircraft high-lift system

with no nacelle, which has been previously described in detail [12]. For comparison purposes, the solver

achieves a single processor computational rate of 75 Mflops on the Origin 2000, and 225 Mflops on the Cray

SV1. Figure 7.1 depicts a comparison of the scalability achieved using OpenMP and using MPI on the Cray
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SV1. Figure 7.1 depicts a comparison of the scalability achieved using OpenMP and using MPI on the Cray



SV1, while Figure 7.2 depicts the same comparison on the Origin 2000. In both cases, the two approaches

yield very similar results. The Cray SV1 contains a relatively flat memory architecture and the MPI library

is implemented using the shared memory protocols, so one would expect the two approaches to yield similar

results. The OpenMP implementation is seen to give slightly lower scalability although the actual timings

are never more than 10_ apart for both methods.

The cc-NUMA memory architecture of the SGI Origin 2000 can significantly alter the performance of

a shared memory implementation depending on how the requested memory is mapped to the architecture,

since this memory is logically shared, but physically distributed. The current implementation makes use of

the first touch rules, in which memory is allocated to the processors which are the first to access or touch it.

Memory placement is thus achieved by executing a parallel loop in which each processor initializes all arrays

on the subdomain(s) to which it has been assigned. Figure 7.2 indicates that the performance of OpenMP

and MPI are very similar on the Origin 2000, right up to 128 processors. OpenMP is again slightly slower

than the MPI implementation, but the timings differ by no more than 10_ in all cases. The slightly slower

OpenMP results may be due to the higher number of implicit synchronizations in this implementation.

Figure 7.3 illustrates the speedups achieved for a small problem (200,000 grid points) running on single

and dual 400MHz Pentium II processors in a shared memory cabinet using MPI and OpenMP. In this case,

the OpenMP result is slightly faster than the MPI result using the same two shared-memory processors. On

the other hand, the best result is obtained using MPI on two distributed memory processors, which offers

twice the effective memory bandwidth of the shared memory configuration.

Figure 7.4 depicts the relative speedups in going from 16 to 32 processors for the 3.1 million point case

discussed previously on a cluster of 32 Pentium 500 MHz processors, arranged as 16 cabinets with two shared

memory processors each. The baseline 16 cpu case was run using one MPI process on each processor. The

32 cpu case was run as a pure MPI code using one MPI process on each processor, and as a mixed MPI

- OpenMP code, using one MPI process on each cabinet, with 20penMP threads per cabinet, using both

communication models described in the previous section. In this case, the MPI-alone strategy produces the

best speedup, although the differences between all three methods are very small.
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Figure 7.5 depicts the relative timings for the same case running in the hybrid MPI-OpenMP mode on

an Origin 2000, using different combinations of MPI and OpenMP, up to 128 processors, for the thread-

to-thread communication model, while Figure 7.6 depicts the results obtained using the overlapping MPI-

OpenMP communication model. The data point at 64 MPI processes and 20penMP threads in Figure

7.5 is not representative, since in this case the operating system would occasionally place two threads on

one processor. With this exception, both figures indicate that for small OpenMP thread counts, a minor

slowdown is observed for the hybrid model over the pure MPI model, with mounting efficiency losses as the

number of threads is increased, although these are substantially smaller for the overlapping MPI-OpenMP

communication model.

In the case of thread-to-thread communication, much of the slowdown has been traced to the MPI calls

locking and thus executing sequentially at the thread level. Apparently, the definition of "thread-safe" MPI

at present simply refers to the possibility of executing MPI calls from a multi-threaded environment, and

does not cover the thread-parallel execution of such MPI procedures. Because there are more messages to

be sent and no overlap in this case, poorer performance than in the alternate approach is observed. The

performance of MPI under OpenMP can be expected to be dependent on vendor implementation, and it

is still not clear whether fully thread-level parallel MPI communication will be implemented by vendors in
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Figures 7.7 through 7.9 depict the scalability for the same case using MPI exclusively on three large

parallel machines: the ASCI Red machine, an Intel based machine at Sandia National Laboratory, the ASCI

Blue Pacific Machine, an IBM based machine at Lawrence Livermore National Laboratory, and the ASCI Blue

Mountain Machine, a collection of 16 × 128 cpu Origin 2000 Machines at Los Alamos National Laboratory.

In the first two cases, the scalability of the single grid solver is also compared with that of the multigrid

solver using 5 grid levels. As expected, the multigrid solver delivers somewhat lower scalability than the

single grid solver due to the larger amount of communication generated on the coarser grids, although both

algorithms follow the same asymptotic trends. In practice, the multigrid solver always delivers much faster

convergence and must be used for converging real problems. However, the single grid scalability results can

be interpreted as an upper limit on the scalability achievable by the multigrid algorithms.

From these figures, the best scalability is observed on the ASCI Red machine with good speedups

observed right up to 2048 processors, while scalability on the two other machines begins to drop off around

256 to 512 processors. Better scalability is observed for larger problem sizes, as shown in Figure 7.9 and

Figure 7.10, where a 24.7 million point grid (exact subdivision by 8 of the previous grid) is seen to scale

reasonably well up to 1024 Origin 2000 processors, and up to 1450 processors on the T3E-1200E.
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8. GMRES Acceleration. While good scalability on large numbers of processors is important for

reducing turnaround time, accelerating the numerical convergence to steady-state is equally important in

achieving this goal. Although the preconditioned unstructured multigrid algorithm described previously [10]

provides relatively fast convergence for many cases, further increases in convergence efficiency can be achieved

by incorporating a Krylov acceleration technique such as the General Minimum Residual (GMRES) method

[20]. The existing preconditioned directional implicit agglomeration multigrid algorithm can be employed as

12



2OOO

1800

1600

1400

"_1200
a

_I000

800

600

400

200

o_

///

+ SINGLE GRID // B

+ MG W-Cycle /-/

............................IDEAL /"

200 400 600 800 1000 1200 1400 1600 1800 2000

NPROC

IOO0

9OO

8OO

7OO

"-i 600
a

500

400

300

200

100

0

//
/-

+ SINGLE GRID /

+ MG W-Cycle /_
/-

............................IDEAL /
./

/
/.-

/

//// _

.
I I I I I I I I I I

100 200 300 400 500 600 700 800 900 1000

NPROC

FIa. 7.7. Observed Speedups for Single Grid and

Multigrid Solver on Intel Based Machine at Sandia Na

tional Laboratory

FIa. 7.8. Observed Speedups for Single Grid and

Multigrid Solver on IBM Based Machine at Lawrence Liv

ermore National Laboratory

1000

800

Q.

i_ 600

I,LI
I,LI
O.

400

200

+ 3 Million Pt Case

_' 24 Million Pt Case

DEAL

Q-

' I I I I I

200 400 600 800 1000

NPROC

Fza. 7.9. Observed Speedups for 3.1 million point and

24.7 million point single grid problem on ASCI Blue Moun

rain SGLOrigin Cluster Machine at Los Alamos National

Laboratory

1500

1400

1300

1200

1100

1000

O., 900
"-i
a 800
1.1.1
1.1.1 700
O.,

600

500

400

300

200

100

+ SINGLE GRID

+ 5 Level MG W-Cycle

+ 6 Level MG W-Cycle

............................IDEAL

/
/

/
-" I I I I I I I I I I I I I I

100 200 300 400 500 600 700 800 900 100011001200130014001500

NPROC

FIa. 7.10. Observed Speedups for 24.7 million point

single grid problem on Gray T3E 1200E

8. GMRES Acceleration. While good scalability on large numbers of processors is important for
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a preconditioner itself to GMRES [8, 15]. The current implementation uses a nonlinear GMRES solver [28]

which computes Jacobian-vector products by finite differencing the residual.

Parallelization of the GMRES algorithm is almost trivial, since the bulk of the work is confined to the

existing parallel multigrid solver. The principal additional steps involve the computation of global norms

for each search direction (implemented as parallel reduction operations), and the solution of a least-squares

problem of the order of the number of search directions, which is performed redundantly on each processor.

The addition of GMRES incurs little extra cpu time, measured on a multigrid cycle basis, but requires

considerable additional storage, since a solution vector must be stored for each of the Krylov search directions.

In the current implementation, 20 search directions are employed, resulting in a memory increase of 100 words

per vertex (about 50_ increase).

One of the attractive features of this implementation is that the number of search directions can be

specified at run time. Since many parallel computers are run in the space-sharing (as opposed to time-

sharing) mode, each cpu most often hosts a single process. In situations where this process does not require

the entire amount of memory local to that processor, additional GMRES search directions can be used to

make use of this "free" memory, thus accelerating convergence and reducing overall cpu time.
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FIG. 8.1. Multigrid Convergence Rates for Coarse (3.1 million pt) Grid with and without GMRES acceleration

and Fine (23.7 million pt) Grid without GMRES acceleration at 0.2 Mach Number and 10 degrees Incidence

The convergence history for the previously discussed aircraft high-lift case is shown in Figure 8.1. The

freestream Mach number is 0.2, the incidence is 10 degrees, and the Reynolds number is 1.6 million. Con-

vergence is shown for the coarse 3.1 million point grid with and without GMRES acceleration option, as

well as for the 24.7 million point grid without GMRES. The convergence histories of the fine and coarse

grids without GMRES are very similar, indicating that the multigrid algorithm is successful in providing

grid independent convergence rates. The addition of GMRES in the coarse grid case (initiated after 100

multigrid cycles) is seen to accelerate substantially the asymptotic convergence. As can be surmised from

this example, the addition of GMRES is most beneficial when convergence to very low tolerance levels is

desirable. Note that for the fine grid, GMRES could not be applied due to the lack of available memory.
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9. Additional High-Lift Cases. In order to demonstrate the capability of the current methodology

in handling realistic complex geometries, the flow over a complete high-lift transport configuration has been

computed. The baseline geometry is similar to the one discussed in the previous section, and described in

more detail in previous work [12]. However, the pylon and nacelle have been added to this geometry to

create a realistic full configuration high-lift case. The grid generated for this case is depicted in Figure 9.1.

This grid was generated using the VGRID program [17] and contains 2.9 million vertices and 16.9 million

cells, with a spacing at the aircraft surface skin of 1.35 × 10 6 root chord lengths. A qualitative depiction of

the computed solution on this grid is given in Figure 9.2 for a freestream Mach number of 0.2, an incidence

of 10 degrees, and a Reynolds number of 1.6 million. The convergence rate for this case is very similar to

that displayed in Figure 8.1, for the 3.1 million point grid without GMRES, and is therefore not reproduced

here. The residuals were decreased by four orders of magnitude over 500 multigrid cycles, using a five level

multigrid sequence with no GMRES acceleration. This case was run on a cluster of 32 Pentium II 400 MHz

cpus, and required 5 Gbytes of memory and 5.5 hours to obtain the final solution. A complete comparison

of these computed results with experimental wind-tunnel results is planned for the near future.

The next test case involves an experimental high-lift geometry known as the Trapezoidal Wing configu-

ration. This geometry is currently the subject of an extensive experimental investigation aimed at providing

a complete set of surface and off-body flow data to enable comparison and validation of CFD codes for

high-lift flows. The configuration consists of a half-span low-aspect ratio swept wing, with a full span slat

and full span flap. The freestream Mach number is 0.2, and the Reynolds number is 19 million based on

the reference chord. A grid of 2.4 million points has been generated about this configuration, with a normal

wall spacing of 2 × 10 6 chords, and is illustrated in Figure 9.3.

FIc. 9.1. Unstructured Grid for Complete Wing Body Nacelle Pylon Geometry; Number of Grid Points 2.9

million
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FIG.9.2.Computed Pressure Contours for Flow Over Complete Wing Body Nacelle Pylon High Lift Configuration

FIG. 9.3. Unstructured Grid for Trapezoidal Wing

High Lift Geometry; Number of Grid Points: 2.8 million

FIG. 9.4. Computed Surface Density Contours for

Flow over Trapezoidal Wing Geometry at 28 degres In

cidence. Mach 0.2, Reynolds 19 million

A sample solution is depicted in Figure 9.4, as computed surface density contours on the wing. The

convergence history for the computed flow at 28 degrees incidence is given in Figure 9.5, using the multigrid

algorithm with five grid levels. A total of 4.8 Gbytes of memory and approximately 35 minutes of wall clock

time were required on a 128 cpu Origin 2000 to obtain this level of convergence.The computed lift curve

is compared with experimental data in Figure 9.6. Maximum lift occurs at approximately 34 degrees, at

a C1 value of about 2.8. Although the location of the Clmax point is relatively well predicted, the level is

somewhat lower than the experimental values. This is most likely the result of insufficient grid resolution.

A full grid refinement study along with a more detailed comparison of computed and experimental values

for this case involving surface pressures and off-body flow profiles is planned for the near future.
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10. Conclusions. Table 1 illustrates the computational resources required for sample high-lift analysis

cases of medium and high resolution. These results indicate that unstructured mesh analyses involving several

million grid points are currently efficient enough to be productionalized on cost-effective mid-size parallel

computer architectures, and that very large high-resolution cases can be carried out on capable current-day

supercomputers. The current parallel implementation supports MPI, OpenMP and a two-level hybrid MPI-

OpenMP strategy for clusters of shared memory processors. On shared memory machines, the performance

of MPI alone and OpenMP alone appear to be equivalent. Otherwise, a pure MPI-based strategy has been

found to deliver better performance than hybrid combinations of MPI and OpenMP. However, these results

are necessarily dependent on hardware and vendor implementation of the parallel libraries, and evaluation

will continue as new hardware becomes available. Strategies which make use of unused system resources, such

as a run-time specified GMRES option have also been shown to increase overall efficiency. Future work will

concentrate on parallelizing the preprocessing operations such as grid partitioning and coarse level multigrid

agglomeration, in order to enable the demonstration of much larger cases on available supercomputers.
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will continue as new hardware becomes available. Strategies which make use of unused system resources, such

as a run-time specified GMRES option have also been shown to increase overall efficiency. Future work will
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agglomeration, in order to enable the demonstration of much larger cases on available supercomputers.
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TABLE 10.1

Sample Timings for Medium and Large Problems on Various Computer

Architectures. Memory Quoted in Gbytes, Solution Time Quoted in minutes

for 500 multigrid cycles

Platform Procs Memory Time

3.1 M Points_ 18 M Cells

Pentium (400MHz) 32 5.5 345

Origin 2000 (250MHz) 128 5.5 75

Cray SV1 16 5.5 205

24.7 M Points, 144 M Cells

T3E-600 512 52 235

T3E-1200e 1450 52 62
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